Η φύση αγαπά την αλήθεια, και η αλήθεια της φύσης διεκδικεί το δικαίωμα να εκτίθεται μόνο σε όσους την ποθούν. Φ. Ντοστογιέφσκι

Τετάρτη 25 Απριλίου 2012

ΜΗ ΚΕΝΤΡΙΚΗ ΕΛΑΣΤΙΚΗ ΚΡΟΥΣΗ


Μια προέκταση της άσκησης 5.41 σελ. 180 του σχολικού βιβλίου

Α.  Να δείξετε ότι μετά την πλάγια ελαστική κρούση μεταξύ δύο σωμάτων ίδιας μάζας που το ένα αρχικά ήταν ακίνητο, τα δύο σώματα θα κινηθούν προς κάθετες μεταξύ τους κατευθύνσεις.
Β. Πάνω σε ένα λείο οριζόντιο τραπέζι ηρεμεί ένα σφαιρίδιο Σ2 μάζας m = 1 kgr στερεωμένο στην άκρη οριζόντιου ελατηρίου σταθεράς k = 100 N/m, του οποίου το άλλο άκρο συγκρατείται από ακλόνητο στήριγμα. Ένα δεύτερο σφαιρίδιο Σ1 ίδιας μάζας με το Σ2 κινείται με ταχύτητα υ1 =  2 m/sec πάνω σε μια ευθεία που δε διέρχεται από το κέντρο του Σ2 και σχηματίζει γωνία φ = 1350 με τον άξονα του ελατηρίου.  Ακολουθεί πλάγια ελαστική κρούση στο τέλος της οποίας διαπιστώνεται ότι το Σ2 κινείται κατά μήκος του άξονα του ελατηρίου κάνοντας απλή αρμονική ταλάντωση.
   1.  Ποια είναι η διεύθυνση κίνησης του Σ1 μετά την κρούση;  Πόσο είναι το μέτρο της ταχύτητάς του μετά την κρούση;                                                             
   2.  Να υπολογίστε τη μέγιστη ταχύτητα, το πλάτος της ταλάντωσης, και τη μέγιστη επιτάχυνση του Σ2.                                                                
   3. Να παραστήσετε σε κοινό ορθογώνιο σύστημα αξόνων τις συναρτήσεις της κινητικής, της δυναμικής και της ολικής ενέργειας της ταλάντωσης, σε συνάρτηση με την ταχύτητα.      

Δείτε:

Δευτέρα 23 Απριλίου 2012

 Το «ταυ».


Ένα εκκρεμές (σχήμα 1) αποτελείται από δύο παρόμοιες ομογενείς λεπτές ράβδους α και β, με ίδιο μήκος L = 0,6 m και ίδια μάζα m = 2/3 kgr, συγκολλημένες κάθετα μεταξύ τους έτσι ώστε το ένα άκρο της α να συμπίπτει με το μέσον της β. Με τον τρόπο αυτό σχηματίζουν ένα Τ το οποίο μπορεί να περιστρέφεται γύρω από οριζόντιο άξονα, που διέρχεται από το άλλο άκρο Ο της α και είναι κάθετος στο επίπεδο που ορίζεται από τις ράβδους. Έτσι, το «Τ» συμπεριφέρεται ως εκκρεμές  που μπορεί να ταλαντώνεται  πάνω στο κατακόρυφο επίπεδο που ορίζεται από αυτό.
Α. Να υπολογίσετε τη ροπή αδράνειας του «Τ» γύρω από τον άξονα περιστροφής του.

Β. Στο σχήμα 2, το «Τ» ισορροπεί μαζί με ένα στερεό, το οποίο αποτελείται από δύο ομόκεντρες, κολλημένες μεταξύ τους, ομογενείς τροχαλίες. Η κοινή ισορροπία επιτυγχάνεται με τη βοήθεια δύο κατακόρυφων λεπτών σχοινιών που είναι τυλιγμένα στα αυλάκια των τροχαλιών του στερεού. H ακτίνα R της μεγάλης τροχαλίας είναι 0,2 m, ενώ της μικρής είναι r = 0,1 m.
Να υπολογίσετε τη μάζα m1 του στερεού.

Γ. Κάποια στιγμή κόβουμε το σχοινί με το οποίο συνδέονται τα δύο σώματα και έτσι το «Τ» αρχίζει να περιστρέφεται γύρω από το Ο, ενώ το στερεό αρχίζει να κατεβαίνει προς τα κάτω και το σχοινί που είναι τυλιγμένο στη μικρή τροχαλία να ξετυλίγεται χωρίς να γλιστράει.
Να βρείτε τη μέγιστη κινητική ενέργεια του «Τ».                                                        
Δ.  Αν ο ρυθμός μεταβολής της ορμής του στερεού είναι 5 kgr.m2, να υπολογίσετε: 

Δείτε:

Σάββατο 14 Απριλίου 2012

ΣΥΝΑΝΤΗΣΕΙΣ ...΄Η ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ Vs Θ.Μ.Κ.Ε


Συχνά λέμε στους μαθητές «αν σε ένα πρόβλημα κινηματικής δεν αναφέρονται χρόνοι, λύστε το με το θεώρημα έργου – ενέργειας ή Θ.Μ.Κ.Ε». Η συμβουλή αυτή μπορεί να παγιδεύσει τους μαθητές αν οι κινήσεις που αναφέρονται στο πρόβλημα αφορούν δύο κινητά και είναι ομαλές.
Όταν δύο κινητά συναντιούνται, υπάρχει μια σχέση που δεν μπορεί να αξιοποιηθεί με την ενεργειακή μελέτη της κίνησής τους. η σχέση των χρόνων κίνησής τους. Π.χ. αν τα κινητά ξεκινούν ταυτόχρονα, οι χρόνοι κίνησής τους θα είναι ίσοι. 
Παρακάτω παρουσιάζονται δύο παραδείγματα.

1. Κυλιόμενη σφαίρα και κυβικό σώμα σε πλάγιο επίπεδο

Μία ομογενής σφαίρα, μάζας Μ = 3 kgr και ακτίνας R = 0,07 m, ανέρχεται πάνω σε  ένα πλάγιο επίπεδο, γωνίας κλίσης φ = 300, κυλιόμενη χωρίς να ολισθαίνει. Κάποια στιγμή, που τη θεωρούμε αρχή μέτρησης των χρόνων, η σφαίρα περνά από ένα σημείο Α του πλάγιου επιπέδου με ταχύτητα υ0 = 10 m/sec. Τη στιγμή αυτή αφήνουμε ένα κυβικό σώμα μάζας m = 1kgr, να ολισθήσει χωρίς αρχική ταχύτητα από ένα σημείο Γ του πλάγιου επιπέδου που βρίσκεται ψηλότερα από το Α.
α) Να υπολογίσετε το μέτρο του ρυθμού μεταβολής της στροφορμής της σφαίρας και του ρυθμού μεταβολής της ορμής του κύβου.
Σας δίνεται ότι η τριβή ολίσθησης που ασκείται στο κυβικό σώμα είναι ίση με τη στατική τριβή που δέχεται η σφαίρα.
β) Να υπολογίσετε την απόσταση ΑΓ, ώστε τα δύο σώματα να συγκρουστούν τη στιγμή που η ταχύτητα της σφαίρας μηδενίζεται.
 γ) Αν η κρούση είναι μετωπική κι ελαστική, να υπολογίσετε την ταχύτητα του κάθε σώματος αμέσως μετά την κρούση. (Θεωρείστε ότι όλη η ενέργεια που μεταφέρεται στη σφαίρα κατά τη διάρκεια της κρούσης μετατρέπεται αποκλειστικά σε μεταφορική κινητική ενέργεια).
  Δίνεται ότι η ακτίνα της σφαίρας και η ακμή του κύβου είναι αμελητέες σε σχέση με την απόσταση ΑΓ και ότι: g = 10 m/sec2, Ιc.m, σφ = 2ΜR2/5.                   

Δείτε:


2. Δύο κυλιόμενες μπάλες 


 Δύο μικρές σφαιρικές μπάλες με ίσες ακτίνες και μάζες, βρίσκονται αρχικά ακίνητες πάνω σε ένα οριζόντιο επίπεδο και σε απόσταση L = 46 m η μία από την άλλη, πολύ μεγάλη σε σύγκριση με τις ακτίνες τους. Η μια σφαίρα είναι συμπαγής, με ροπή αδράνειας  (2/5)mR2 ενώ η άλλη είναι κούφια (σφαιρικός φλοιός) με ροπή αδράνειας (2/3)mR2.
Υποθέστε ότι κάποια στιγμή (t=0) στα κέντρα των δύο σφαιρών ενεργούν δύο αντίθετες οριζόντιες δυνάμεις (μια σε κάθε σφαίρα), σταθερού μέτρου F, εξαιτίας των οποίων οι δύο σφαίρες αρχίζουν να πλησιάζουν η μία προς την άλλη.

α) Αν η κίνησή τους είναι κύλιση χωρίς ολίσθηση, να βρείτε σε ποια θέση θα συναντηθούν.

β) Αν ελάχιστα πριν την κρούση η συνολική κινητική ενέργεια της συμπαγούς σφαίρας είναι 125 J, πόσο είναι το μέτρο της F και πόση είναι η μεταφορική και η στροφική κινητική ενέργεια της άλλης σφαίρας;

Δείτε:

Παρασκευή 30 Μαρτίου 2012

ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ – ΘΕΜΑ Β


Μια ερώτηση, σε δύο πολύ διαφορετικές εμφανίσεις.
Πώς μια ερώτηση, εύκολη για μαθητές, μπορεί να γίνει δύσκολη ακόμη και για καθηγητές.
α. Δυο ποδηλάτες πάνω σε περιστρεφόμενη πλατφόρμα.(Η «εύκολη» εμφάνιση).
Δύο ποδηλάτες  Α και Β με ίσες μάζες (mΑ = mB = m)  κινούνται πάνω σε μια οριζόντια κυκλική εξέδρα που στρέφεται αριστερόστροφα με γωνιακή ταχύτητα ω γύρω από κατακόρυφο άξονα που διέρχεται από το κέντρο της. Στο σχήμα 1 φαίνονται οι τροχιές που διαγράφουν. είναι ομόκεντροι κύκλοι ακτίνων r1 και r2  (r1 > r2) με κέντρο το κέντρο της εξέδρας. Τα μέτρα των ταχυτήτων των δύο ποδηλατών είναι ίσα (υΑ = υΒ = υ). Αρχικά, η φορά περιστροφής του ποδηλάτη Β είναι ομόρροπη με τη φορά περιστροφής της εξέδρας, ενώ του A αντίρροπη.
Κάποια στιγμή αποφασίζουν να ανταλλάξουν τις τροχιές που διαγράφουν χωρίς να αλλάξουν τη φορά κίνησής τους. Ο ποδηλάτης Α πλησιάζει προς το εσωτερικό της εξέδρας και συνεχίζει, χωρίς να αλλάξει την ταχύτητά του, να κινείται πάνω στο κύκλο ακτίνας r2 που διέγραφε ο Β. Ταυτόχρονα ο Β εξέρχεται και συνεχίζει με την ίδια ταχύτητα να κινείται πάνω στον κύκλο ακτίνας r1 (σχήμα 2).
Να εξετάσετε τι θα συμβεί στην περίοδο περιστροφής της εξέδρας.
Οι τριβές με τον άξονα θεωρούνται αμελητέες. Οι ταχύτητες έχουν μετρηθεί από παρατηρητές ακίνητους ως προς το έδαφος.


Δείτε:

β. Από την “από αριστερά οδήγηση” στην “οδήγηση από δεξιά”. (Η «δύσκολη» εμφάνιση).
Είναι αλήθεια ότι, αν οι Βρετανοί αποφάσιζαν να αλλάξουν μια συνήθειά τους, ο ήλιος θα στεκόταν περισσότερο χρόνο πάνω από κάθε τόπο στη διάρκεια μιας μέρας;

Όπως είναι γνωστό, στη Μ. Βρετανία υπάρχει ο κανονισμός οι οδηγοί να οδηγούν το όχημά τους στην αριστερή πλευρά των δρόμων (οδήγηση από αριστερά). Αν κάποια μέρα αποφάσιζαν να αλλάξουν τη συνήθειά τους και επέβαλλαν την οδήγηση από δεξιά, θα είχε αυτή η αλλαγή κάποια επίπτωση στη διάρκεια της ημέρας; 

Δείτε:


Σάββατο 17 Μαρτίου 2012

ΙΣΟΡΡΟΠΙΕΣ ΚΑΙ … ΑΝΙΣΟΡΡΟΠΙΕΣ


1. Η ελάχιστη δύναμη
Μια μεταλλική ράβδος κόβεται σε τρία κομμάτια ΑΒ, ΒΓ και ΓΔ, τα οποία συγκολλούνται έτσι ώστε να φτιάχνουν το ένα με το άλλο ορθή γωνία και να βρίσκονται στο ίδιο οριζόντιο επίπεδο, όπως στο σχήμα. Μεταξύ των μηκών των τριών κομματιών ισχύει η σχέση:
2ΑΒ = ΒΓ = 2ΓΔ = 2L
Με αυτό το σχήμα η ράβδος μπορεί να περιστρέφεται χωρίς τριβές γύρω από κατακόρυφο άξονα που διέρχεται από το μέσο Ο της ΒΓ. Μια οριζόντια δύναμη FA = 10 2  Ν εφαρμόζεται στο άκρο Α κάθετα στο ΑΒ όπως φαίνεται στο σχήμα.
Να βρείτε την ελάχιστη δύναμη που πρέπει να ασκήσουμε στο άλλο άκρο Δ ώστε η ράβδος να ισορροπεί. Αγνοείστε το βάρος.  


Δείτε:


2.  Μια σκάλα που δεν ισορροπεί

Προσπαθούμε να στηρίξουμε μια σκάλα, της οποίας το κέντρο μάζας ταυτίζεται με το μέσον της, πάνω σε ένα απολύτως λείο οριζόντιο δάπεδο και σε ένα λείο κατακόρυφο τοίχο με τη βοήθεια ενός σχοινιού που το δένουμε ακριβώς στη μέση της και στην κορυφή της γωνίας Α μεταξύ δαπέδου και τοίχου. Ποια από τις παρακάτω προτάσεις είναι σωστή και γιατί;
α)  Η σκάλα είναι δυνατό να ισορροπήσει με μια κατάλληλη τιμή της τάσης του σχοινιού που εξαρτάται από τη γωνία σκάλας - δαπέδου.
β)  Η σκάλα είναι αδύνατο να ισορροπήσει για οποιαδήποτε τιμή της τάσης του σχοινιού (δηλαδή όσο τεντωμένο κι αν είναι το σχοινί) και για οποιαδήποτε γωνία με το δάπεδο. 


Δείτε:



3. Ένα κρεβάτι σπρώχνεται με μια οριζόντια δύναμη


Ένα κρεβάτι σπρώχνεται με μια οριζόντια δύναμη F = 200 Ν, που εφαρμόζεται στο σημείο Β όπως φαίνεται στο σχήμα. Το κρεβάτι μπορεί να περιστρέφεται γύρω από κατακόρυφο άξονα που διέρχεται από την κορυφή Α. Ποια είναι η ροπή της F ως προς τον άξονα;

ΟΔΗΓΙΑ

Αναλύστε την F σε δύο διευθύνσεις από τις οποίες η μια να είναι κάθετη στη διαγώνιο ΑΒ, ή προσδιορίστε την απόσταση του Α από το φορέα της F.

Δείτε:


4. Ισορροπία μεταλλικού τόξου

Το στερεό Σ του σχήματος είναι μια καμπυλωμένη πρισματική ράβδος η οποία μπορεί να περιστρέφεται γύρω από ακλόνητα στερεωμένο οριζόντιο άξονα που διέρχεται από το άκρο της Α.
Το στερεό συγκρατείται στη θέση που φαίνεται στο σχήμα με τη βοήθεια οριζόντιας δύναμης F= 20 Ν που ενεργεί στο άλλο άκρο του Β. Η δύναμη που ασκεί ο άξονας στο άκρο Α του στερεού σχηματίζει γωνία 30ο με τον κατακόρυφο τοίχο.
α) Να υπολογίσετε τη μάζα του στερεού.
β) Αν το κέντρο μάζας του στερεού βρίσκεται πάνω στην οριζόντια ευθεία (ε) του σχήματος και η διαφορά ύψους  των άκρων του είναι h = 2 m, να προσδιορίσετε τη θέση του πάνω στην ευθεία αυτή.
Δίνονται: g = 10 m/s2 και ημ30ο = 0,5.


Δείτε:



Κυριακή 11 Μαρτίου 2012

ΔΥΟ ΒΑΣΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ


1. Ένα παιδί διασχίζει μια γέφυρα
Το παιδί με τα πατίνια, ξεκινάει τη στιγμή t = 0 από την αρχή ενός γεφυριού και τρέχει πάνω του με ταχύτητα υ = 5 m/sec. Το γεφύρι, βάρους w2 = 8000 Ν και μήκους L = 40 m, στηρίζεται πάνω σε δύο στηρίγματα καθένα από τα οποία απέχει 10 m από το πλησιέστερο άκρο του γεφυριού. Το βάρος του γεφυριού εφαρμόζεται ακριβώς στο μέσο του. 
Να εξάγετε, σε συνάρτηση με το χρόνο, τις σχέσεις που παρέχουν τις αντιδράσεις Ν1 και Ν­2 των δύο στηριγμάτων και να τις παραστήσετε γραφικά. 
Δίνεται το βάρος του παιδιού: w1 = 400 N.
Δείτε:

2. Κρούση – ταλάντωση και ισορροπία
Στο σχήμα, μια ομογενής άκαμπτη ράβδος μεγάλου μήκους ισορροπεί οριζόντια συγκρατημένη στα άκρα της με μια άρθρωση κι ένα κατακόρυφο σχοινί. Πάνω της ηρεμεί, αρχικά, ένα σώμα μάζας Μ στερεωμένο στο άκρο ενός ελατηρίου σταθεράς k, που έχει το φυσικό του μήκος. Ένα βλήμα μάζας  m κινούμενο με οριζόντια ταχύτητα υ, στην προέκταση του άξονα του ελατηρίου, συγκρούεται πλαστικά με το σώμα. Τριβές δεν υπάρχουν.
α) Να βρείτε το πλάτος ταλάντωσης του συσσωματώματος .
β) Να υπολογίσετε τη μέγιστη κι ελάχιστη τάση του σχοινιού.
Εφαρμογή για: w = 60 N, ℓ = 4 m, k = 100 N/m, M = 3 kgrm = 1 kgr, υ = 20 m/s και  g = 10 m/s2

Δείτε: