Η φύση αγαπά την αλήθεια, και η αλήθεια της φύσης διεκδικεί το δικαίωμα να εκτίθεται μόνο σε όσους την ποθούν. Φ. Ντοστογιέφσκι

Εμφάνιση αναρτήσεων με ετικέτα 3.6 ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα 3.6 ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ. Εμφάνιση όλων των αναρτήσεων

Τετάρτη 1 Απριλίου 2020

Σανίδα πάνω σε δυο κυλίνδρους σε πλάγιο επίπεδο

Μια σανίδα βρίσκεται πάνω από 2 ομοιόμορφους κυλίνδρους που βρίσκονται σε ένα πλάγιο επίπεδο γωνίας κλίσης θ = 300 . Η σανίδα έχει μάζα Μ και καθένας από τους κυλίνδρους έχει μάζα Μ/2. Το σύστημα αφήνεται ελεύθερο από την ηρεμία. Εάν δεν υπάρχει ολίσθηση μεταξύ των επιφανειών επαφής, να βρείτε την επιτάχυνση της σανίδας. 
Δίνονται g =10 m/s2 και Ιc = (1/2)MR2.

Δευτέρα 30 Μαρτίου 2020

Το έργο της στατικής τριβής

[Είναι μηδέν μόνο αν είναι μηδέν και η ταχύτητα της επιφάνειας πάνω στην οποία κυλίεται ένα σώμα].
Ένας άνθρωπος σπρώχνει ένα κύλινδρο μάζας Μ = 2 kg με τη βοήθεια μιας σανίδας μάζας Μ= 2 kg, όπως φαίνεται στο σχήμα. Δεν παρατηρείται ολίσθηση στα σημεία επαφής του κυλίνδρου με τη σανίδα και το έδαφος. Η οριζόντια συνιστώσα της δύναμης του ανθρώπου στη σανίδα είναι ίση με F = 11 N.
α. Πόση είναι η επιτάχυνση της σανίδας και του κυλίνδρου ως προς το έδαφος;
β. Πόσο έργο θα παραχθεί από την F για να μετατοπίσει τον κύλινδρο κατά 1 m;
γ. Πόσο είναι το έργο των δυνάμεων που ενεργούν πάνω στον κύλινδρο κατά την παραπάνω μετατόπιση;
Δίνεται η ροπή αδράνειας του κυλίνδρου ΙC = (1/2)ΜR2.

Απάντηση σε pdf:  

Απάντηση σε word: 

Παρατήρηση:

Σάββατο 28 Μαρτίου 2020

Κύλινδρος σε ταλαντευόμενη πλατφόρμα


Ένας συμπαγής ομογενής κύλινδρος μάζας Μ και ακτίνας R είναι τοποθετημένος πάνω σε μια οριζόντια ορθογώνια πλατφόρμα μεγάλου μήκους. Αρχικά τα δυο σώματα είναι ακίνητα ως προς το έδαφος. Τη στιγμή  t = 0 η πλατφόρμα ξεκινά να εκτελεί ταλάντωση κατά τη διεύθυνση του άξονα xx΄ με εξίσωση x = x0συνωt, όπου x η απομάκρυνση ενός σημείου της, έστω του Κ, από τη θέση ισορροπίας του (Ι). Ο κύλινδρος, με τον άξονά του ελεύθερο, σταθερά προσανατολισμένο κατά τη διεύθυνση του άξονα yy΄, κάθετη στη διεύθυνση της ταλάντωσης, αρχίζει να κυλίεται πάνω στην πλατφόρμα χωρίς να γλιστράει.  
Η μέγιστη ροπή που επενεργεί στον κύλινδρο κατά τη διάρκεια της κίνησης είναι:
α. Μx0ω2R
     3
β. Μx0ω2R
     2
γ. 2Μx0ω2R
     3
Να αποδείξετε την επιλογή σας.
Δίνεται η ροπή αδράνειας του κυλίνδρου ως προς τον άξονά του Ιc = mR2 / 2.

[Η άσκηση είναι παραλλαγή της άσκησης 40 σελ.387 σε μια προεπισκόπηση του βιβλίου ΙΤΤ Physics – 1]
Συμβουλή:  Η επιτάχυνση των σημείων της ακμής του κυλίνδρου που εφάπτεται της πλατφόρμας είναι ίση με την επιτάχυνση της πλατφόρμας. Μπορεί να μην έχουμε ολίσθηση, αλλά αν προσέξετε θα δείτε ότι εδώ δεν ισχύει η σχέση αc = αγR.

Απάντηση σε pdf: 
Απάντηση σε word:

Δευτέρα 23 Μαρτίου 2020

Κύλινδρος σε σανίδα που επιταχύνεται

Μια επίπεδη σανίδα μάζας m = 1 kg ολισθαίνει πάνω σε μια λεία οριζόντια επιφάνεια με την επίδραση σταθερής οριζόντιας δύναμης F= 50 N. Πάνω της είναι τοποθετημένος ένας κύλινδρος μάζας  M = 2 kg και ακτίνας R = 1 m, όπως φαίνεται στο σχήμα. Αν ο κύλινδρος δεν γλιστράει πάνω στην επιφάνεια της σανίδας, να βρείτε:
α.  Τη γραμμική και τη γωνιακή επιτάχυνση του κυλίνδρου
β. Την επιτάχυνση της σανίδας και την τριβή της με τον κύλινδρο.
Δίνεται για τον κύλινδρο Ιc = (1/2)ΜR2
Απάντηση σε pdf: 

Απάντηση σε word:


-----------------------------------------------------------------------------------------------------------------------

[Μετά από την παραπάνω θα σας φανούν πολύ απλές οι δύο παρακάτω παραλλαγές]:


1. Ένας ομογενής συμπαγής κύλινδρος μάζας Μ και ακτίνας R βρίσκεται πάνω σε μια οριζόντια πλατφόρμα που κινείται με σταθερή επιτάχυνση απ = 3 m/s2. Αν ο κύλινδρος κυλά χωρίς να γλιστράει πάνω στην πλατφόρμα με τον άξονά του κάθετο στη διεύθυνση κίνησης της πλατφόρμας,
α. Προσδιορίστε το μέγεθος της επιτάχυνσης του κέντρου μάζας του κυλίνδρου.
β. Αν ο μέγιστος συντελεστής στατικής τριβής είναι ίσος με τον συντελεστή τριβής ολισθήσεως μολ = 0,4, να βρείτε τη μέγιστη επιτάχυνση που μπορεί να έχει η πλατφόρμα χωρίς ολίσθηση μεταξύ του κυλίνδρου και πλατφόρμας.
Απάντηση 

----------------------------------------------------------------------------------------------------------------------

2.
Ένα κέρμα μάζας m και ακτίνας R στέκεται κάθετα στο δεξιό άκρο μιας οριζόντιας σανίδας μάζας Μ και μήκους L = 1 m, όπως φαίνεται στο σχήμα. Το σύστημα αρχικά ηρεμεί ως προς το έδαφος. Στη συνέχεια, τη χρονική στιγμή t = 0, η σανίδα τραβιέται προς τα δεξιά με μια σταθερή δύναμη και αρχίζει να κινείται με σταθερή επιτάχυνση ασ = 3 m/s2. Αν το νόμισμα δεν γλιστρά σε σχέση με τη σανίδα,

 α) Με πόση επιτάχυνση θα κινηθεί το κέρμα;
β) Πόσο μακριά προς τα δεξιά το κέρμα κινείται μέχρι να φτάσει το αριστερό άκρο της σανίδας;
β) Ποια χρονική στιγμή το νόμισμα θα φτάσει στο άλλο άκρο της σανίδας;
Δίνεται η ροπή αδράνειας Ιc = MR2/2, για το κέρμα.

Κυριακή 15 Μαρτίου 2020

Κύλιση τροχού με σταθερή επιτάχυνση σε παράλληλες σιδηροτροχιές

Ένα αβαρές, μη εκτατό σχοινί, είναι περασμένο στο αυλάκι μιας αβαρούς τροχαλίας Π, που μπορεί να περιστρέφεται χωρίς τριβές γύρω από ακλόνητο οριζόντιο άξονα και στη συνέχεια είναι τυλιγμένο πολλές φορές στην περιφέρεια ενός ομογενούς τροχού T ακτίνας R, που μπορεί να περιστρέφεται μαζί με τον άξονά του, ο οποίος είναι ένας αβαρής κύλινδρος ακτίνας R/2 σταθερά συνδεμένος με αυτόν. Ο κυλινδρικός άξονας του τροχού, μπορεί να κυλήσει χωρίς ολίσθηση κατά μήκος δύο οριζόντιων παράλληλων σιδηροτροχιών P, (επειδή στο σχήμα α φαίνεται μόνο η σιδηρογραμμή στην μπροστινή όψη του τροχού, στο σχήμα β παρατίθεται σχετική κάτοψη). Η μάζα του τροχού είναι Μ και  η ροπή αδράνειάς του ως προς τον νοητό άξονα που είναι κάθετος στο κέντρο C του τροχού είναι (1/2)ΜR2. Αν το άκρο Λ του σχοινιού τραβιέται προς τα κάτω με σταθερή επιτάχυνση g/2 και το σχοινί δεν ολισθαίνει καθώς ξετυλίγεται, να βρείτε:
α) Την κατεύθυνση προς την οποία θα κινηθεί το κέντρο C του τροχού.
β) Την επιτάχυνση του κέντρου C.
γ) Την κατεύθυνση και το μέτρο της τριβής μεταξύ της επιφάνειας του κυλινδρικού άξονα και των σιδηροτροχιών.
δ) Την τάση του σχοινιού.

Απάντηση σε pdf:  
Απάντηση σε word:

Τετάρτη 6 Ιουνίου 2018

Προσοχή στο σχεδιασμό των δυνάμεων! (Ένα ακόμη θέμα Β στα στερεά)


Στο σχήμα, η ομογενής και ισοπαχής ράβδος ΑΚ, μήκους L, μπορεί να περιστρέφεται χωρίς τριβές γύρω από άξονα κάθετο στο σημείο της Ο. Ένας δίσκος Δ μπορεί να περιστρέφεται, χωρίς τριβές και αυτός, γύρω από οριζόντιο άξονα κάθετο στο άκρο Κ της ράβδου.  
Τυλίγουμε στην περιφέρεια του δίσκου Δ ένα αβαρές νήμα και στο ελεύθερο άκρο του δένουμε ένα μικρό σώμα Σ. Αρχικά διατηρούμε το σύστημα ράβδο – δίσκο – σώμα Σ, ακίνητα, με το σχοινί τεντωμένο. Κάποια στιγμή αφήνουμε τη ράβδο, το δίσκο και το σώμα ελεύθερα να κινηθούν. Παρατηρούμε ότι το σώμα αρχίζει να κινείται κατακόρυφα προς τα κάτω, χωρίς το νήμα να ολισθαίνει στην περιφέρεια του δίσκου, που κι αυτός αρχίζει να περιστρέφεται γύρω από τον άξονά του· η ράβδος όμως παραμένει ακίνητη στην αρχική της οριζόντια θέση.

Δευτέρα 7 Μαΐου 2018

Από την ταχύτητα ολίσθησης στην ταχύτητα κύλισης



Μια μπάλα, που αρχικά ηρεμεί σε οριζόντιο επίπεδο, δέχεται μια στιγμιαία ώθηση και ξεκινάει με ταχύτητα υ0 = 2,1 m/s, χωρίς αρχικά να κυλίεται (που σημαίνει ότι αρχικά κινείται ολισθαίνοντας στο έδαφος).  Επειδή όμως η τριβή ολίσθησης ανάμεσα στην μπάλα και στο έδαφος ασκεί μια ροπή πάνω της, η μπάλα θα αρχίσει να περιστρέφεται και τελικά η γωνιακή της ταχύτητα θα πάρει τέτοια τιμή, ώστε η μπάλα θα πάψει να γλιστράει.

Σάββατο 5 Μαΐου 2018

Ρυμούλκηση (Μια "εύκολη" και μια "εκκεντρική")

1. Ένα βαγόνι τραίνου (η … εύκολη)
Ένα βαγόνι τραίνου, φορτωμένο με αυτοκίνητα, έχει μάζα 6000 kg και ρυμουλκείται σε ένα λείο ανηφορικό δρόμο με κλίση 1:30 (ημθ = 1/30), με τη βοήθεια ενός σχοινιού, που τυλίγεται χωρίς να γλιστράει γύρω από ένα κυλινδρικό τύμπανο με διάμετρο 1 m και ροπή αδράνειας 200 kg·m2.
Στο τύμπανο ενεργεί σταθερή ροπή τ = 3000 Ν·m και περιστρέφεται γύρω από τον άξονά του, ο οποίος είναι ακλόνητα στερεωμένος, χωρίς τριβές, με σταθερή γωνιακή επιτάχυνση.

2. Μια μαρμάρινη κυλινδρική κολώνα (η … εκκεντρική)


Στη δεύτερη αυτή άσκηση ρυμουλκείται, όπως φαίνεται στο σχήμα, μια ομογενής μαρμάρινη κυλινδρική κολώνα, όπως  πριν, με τις εξής αλλαγές και προσθήκες:
i. Ο δρόμος δεν είναι λείος και ο κύλινδρος κυλίεται χωρίς να ολισθαίνει.
ii. Η κολώνα έχει μάζα Μ = 6000 kg, ακτίνα R1 = 0,5 m και ροπή αδράνειας Ι1 = 750 kg·m2, ως προς τον γεωμετρικό της άξονα.
Η δύναμη από το σχοινί ενεργεί στο κέντρο μάζας του κυλίνδρου, κάθετα στον άξονα, και παράλληλα προς το δρόμο. Όλα τα άλλα μεγέθη είναι ίδια.

Δευτέρα 20 Μαΐου 2013


Ρυθμοί μεταβολής ορμής και στροφορμής τροχού


12. Ο τροχός του σχήματος έχει μάζα 1 kgr, ακτίνα R = 0,2 m και κυλίεται, χωρίς να ολισθαίνει, με επιτάχυνση αc.m= 3 m/sec2  πάνω σε οριζόντιο επίπεδο με την επίδραση της οριζόντιας δύναμης F.
Να υπολογίσετε τα μέτρα των ρυθμών  μεταβολής της ορμής και της στροφορμής του τροχού.
Δίνεται η ροπή αδράνειας του τροχού ως προς τον άξονα περιστροφής του Ic.m= (2/3)mR2.  

Σάββατο 18 Μαΐου 2013

S.O.S  ΘΕΜΑΤΑ Β ΓΙΑ ΤΟ ΣΤΕΡΕΟ – ΜΕΡΟΣ 1ο


Παράλληλη μεταφορά άξονα περιστροφής …

1. Μια λεπτή ομογενής ράβδος μήκους ℓ μπορεί να περιστρέφεται σε οριζόντιο επίπεδο γύρω από κατακόρυφο άξονα, ο οποίος είναι κάθετος στο ένα άκρο της Α, χωρίς τριβές. Η ροπή αδράνειας της ράβδου ως προς τον άξονα αυτόν είναι: I(A)= (1/3)m2.  Η ράβδος περιστρέφεται υπό την επίδραση σταθερής κατά μέτρο οριζόντιας δύναμης F η οποία ασκείται στο άλλο άκρο της Β και παραμένει συνεχώς κάθετη σ’ αυτή.
Α. Αν μεταφέρουμε παράλληλα τον άξονα περιστροφής στο μέσο της ράβδου ενώ η δύναμη εξακολουθεί να ασκείται στο άκρο Β με τον ίδιο τρόπο, τότε ο λόγος της αρχικής προς την τελική γωνιακή επιτάχυνση της ράβδου θα είναι:
   α) 2,     β)  1/2,    γ) 1/3.

Β. Να δικαιολογήσετε την απάντησή σας.

Ομογενής τροχός με τη βοήθεια σχοινιού ανέρχεται σε πλάγιο επίπεδο 

2. Ομογενής τροχός μάζας m = 2 kgr κυλίεται χωρίς να ολισθαίνει σε πλάγιο επίπεδο γωνίας κλίσης φ = 30ο. Στην περιφέρειά του υπάρχει εγκοπή αμελητέου βάθους. Μέσα στην εγκοπή είναι τυλιγμένο αβαρές λεπτό νήμα μεγάλου μήκους. Στο ελεύθερο άκρο του νήματος ασκούμε σταθερή δύναμη F με διεύθυνση παράλληλη προς το πλάγιο επίπεδο, όπως φαίνεται στο σχήμα και μέτρο κατάλληλο ώστε ο τροχός να κινείται με υcm = σταθ. 

Τότε το μέτρο της F είναι:
  α) 0 Ν,           β)  2 Ν,         γ) 5 Ν.
Να δικαιολογήσετε την απάντησή σας.
Δίνεται: g = 10m/sec2


Τροχός ποδηλάτου αναγκάζεται να κινηθεί πάνω σε οριζόντιο επίπεδο



3. Ένας ομογενής τροχός ποδηλάτου  μάζας m και ακτίνας R αναγκάζεται να κινηθεί πάνω σε οριζόντιο επίπεδο με την επίδραση οριζόντιας δύναμης F που εφαρμόζεται στο κέντρο μάζας του. Ο συντελεστής μέγιστης στατικής τριβής μεταξύ τροχού και εδάφους είναι μ. Θεωρούμε τη μάζα του τροχού συγκεντρωμένη στην περιφέρειά του.
Ο τροχός κυλίεται χωρίς να ολισθαίνει όταν η τιμή της δύναμης F είναι μικρότερη από:
  α) 1,5 μmg,         β) 2μmg,        γ) 2,5 μmg

Να αιτιολογήσετε την επιλογή σας


Δύο όμοιες μικρές σφαίρες ανέρχονται σε πλάγιο επίπεδο



5.  Δύο όμοιες μικρές σφαίρες Α και Β αρχίζουν να ανέρχονται με την ίδια ταχύτητα η καθεμιά σε ένα πλάγιο επίπεδο. Το επίπεδο στο οποίο ανέρχεται η σφαίρα Α είναι τραχύ. Σε όλη τη διάρκεια της ανόδου της κυλίεται χωρίς να ολισθαίνει. Το επίπεδο στο οποίο ανέρχεται η σφαίρα Β είναι λείο, κι έτσι ανέρχεται πάνω σ’ αυτό χωρίς τριβές. Οι σφαίρες έχουν την ίδια μάζα και την ίδια ακτίνα και τα πλάγια επίπεδα την ίδια γωνία κλίσης φ. Από τις δύο σφαίρες, η σφαίρα Α:
α)  Θα διανύσει μεγαλύτερο μήκος πάνω στο πλάγιο επίπεδο.
β)  Θα διανύσει μικρότερο μήκος πάνω στο πλάγιο επίπεδο.
γ)  Θα διανύσει ίδιο μήκος με τη σφαίρα Β πάνω στο πλάγιο επίπεδο.

     Να δικαιολογήσετε την απάντησή σας


Σταθερή ροπή λόγω τριβών με των άξονα περιστροφής (1η)


 6. Αφήνουμε τη ράβδο να περιστραφεί από την οριζόντια θέση γύρω από οριζόντιο άξονα που διέρχεται από το άκρο της Ο και είναι κάθετος σ’αυτήν. Κατά την κίνησή της η ράβδος δέχεται σταθερή ροπή λόγω τριβών από τον άξονα περιστροφής.
   Α. Χαρακτηρίστε καθεμία από τις παρακάτω προτάσεις ως σωστή ή λάθος.
   α.  Όταν η ράβδος διέρχεται από την κατακόρυφη διεύθυνση το μέτρο του ρυθμού μεταβολής της στροφορμής της γίνεται ελάχιστο και ίσο με τη ροπή λόγω τριβών.
β.  Η γωνιακή ταχύτητα της ράβδου στην κατακόρυφη θέση της υπολογίζεται από τη σχέση:  mg(ℓ/2) = (1/2)I(o)ω2όπου mg το βάρος της ράβδου, ℓ το μήκος της και Ι(Ο)  η ροπή αδράνειας της ράβδου ως προς το άκρο της Ο.
   γ.  Το έργο της ροπής λόγω τριβών, τΤ,  υπολογίζεται από τις σχέσεις:
    i)  WT = -τΤ (π/2),   
    ii)  mg(ℓ/2) = (1/2)I(o)ω2  + |WT|
   Β. Να αιτιολογήσετε κάθε χαρακτηρισμό σας.

ΑΠΑΝΤΗΣΗ

mg

mg

A

O